761 research outputs found

    Valley excitons in two-dimensional semiconductors

    Full text link
    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.Comment: Topical review, published online on National Science Review in Jan 201

    Embedding-Based Speaker Adaptive Training of Deep Neural Networks

    Full text link
    An embedding-based speaker adaptive training (SAT) approach is proposed and investigated in this paper for deep neural network acoustic modeling. In this approach, speaker embedding vectors, which are a constant given a particular speaker, are mapped through a control network to layer-dependent element-wise affine transformations to canonicalize the internal feature representations at the output of hidden layers of a main network. The control network for generating the speaker-dependent mappings is jointly estimated with the main network for the overall speaker adaptive acoustic modeling. Experiments on large vocabulary continuous speech recognition (LVCSR) tasks show that the proposed SAT scheme can yield superior performance over the widely-used speaker-aware training using i-vectors with speaker-adapted input features

    Exciton Binding Energy of Monolayer WS2

    Get PDF
    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71eV around K valley in the Brillouin zone. The trion binding energy of 34meV, two-photon absorption cross section 4X10^{4}cm^{2}W^{-2}S^{-1} at 780nm and exciton-exciton annihilation rate around 0.5cm^{2}/s are experimentally obtained.Comment: 5page,3 figure

    Observation of Quantum Capacitance of individual single walled carbon nanotubes

    Get PDF
    We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs

    Determination of the Sign of g factors for Conduction Electrons Using Time-resolved Kerr Rotation

    Get PDF
    The knowledge of electron g factor is essential for spin manipulation in the field of spintronics and quantum computing. While there exist technical difficulties in determining the sign of g factor in semiconductors by the established magneto-optical spectroscopic methods. We develop a time resolved Kerr rotation technique to precisely measure the sign and the amplitude of electron g factor in semiconductors

    Observation of Exciton-Phonon Sideband in Individual Metallic Single-Walled Carbon Nanotubes

    Get PDF
    Single-walled carbon nanotubes (SWCNTs) are quasi-one-dimensional systems with poor Coulomb screening and enhanced electron-phonon interaction, and are good candidates for excitons and exciton-phonon couplings in metallic state. Here we report back scattering reflection experiments on individual metallic SWCNTs. An exciton-phonon sideband separated by 0.19 eV from the first optical transition peak is observed in a metallic SWCNT of chiral index (13,10), which provides clear evidences of excitons in metallic SWCNTs. A static dielectric constant of 10 is estimated from the reflectance spectrum.Comment: 5 pages, 3 figures; typos corrected, references updated, text re-arrange
    • …
    corecore